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Introduction 
Recently, microscale technologies have 
emerged as a powerful tool for high-
throughput cellular and biological studies 
by enabling miniaturized experiments 
(1–3). These miniaturized well arrays can 
be used to segregate cells for single-cell 
analysis (4–6) and multiple-cell studies, 
such as to form neurospheres and embryoid 
bodies (7,8). Typically, these arrays contain 
hundreds or thousands of microwells, such 
that the throughput is significantly higher 
than those conducted using traditional 
multi-well plates. For example, a hydrogel 
microwell array was used to clonally analyze 
neural stem cell (NSC) fates to demon-
strate that neurosphere formation can be 

attributed to a single cell. Using time-lapse 
microscopy and immunostaining, the fate 
of several hundred single NSCs was tracked 
simultaneously (9).

The increase in the number of high-
throughput cellular and biological studies 
have generated a need for high-throughput 
analysis and screening tools capable of 
processing the raw data and presenting it 
in a meaningful and efficient way. New 
advancement in digital imaging has made it 
possible to image biological events on micro- 
and nanoscale levels. To solve combinatorial 
problems related to cell biology and medical 
science, such as optimization of materials 
or screening of chemical libraries, images 
are taken from systems such as microwell 
arrays in which a large number of experi-

ments are investigated in parallel. High-
throughput image processing techniques are 
desired in order to analyze such images, but 
image processing and pattern recognition 
techniques are not adequately developed to 
analyze such biological and medical images. 
To investigate large numbers of images and 
to address new questions in biological and 
medical research, further design and devel-
opment of digital cytometry techniques is 
required.

An important problem in many high-
throughput experiments—specifically in 
stem cell engineering and drug discovery—
is the analysis of cell viability in thousands 
of parallel experiments spotted in micro- 
and nanoliter volumes. To quantify cell 
viability in microwells, the number of 
cells in each microwell of a microarray 
system must be counted. Manual cell 
counting as a practical approach has been 
widely used; however, these results may be 
subjective and vary from person to person. 
Moreover, this is a tedious and laborious 
task that is prone to error due to the large 
number of measurement and analysis steps. 
Therefore, advanced techniques in digital 
image processing and pattern recognition 
must be employed for emerging biological 
applications.

Cell recognition and counting in 
microwell systems are challenging tasks 
due to the presence of debris, high noise, and 
the difficulties of adapting available image 
segmentation approaches. It is imperative 
that cells in these substrates be imaged and 
automatically analyzed in a high-throughput 
manner. A variety of semi-automatic or 
automatic methods have been proposed for 
applications of image processing techniques 
to medical and biomedical research (10–13). 
However, the lack of software comple-
menting such techniques makes it difficult 
for high-throughput screening. Currently 
available software—for example, ImageJ 
(http://rsbweb.nih.gov/ij) and Cellprofiler 
(www.cellprofiler.com)—can only count 
the total number of cells in a defined region, 
which is not suitable for analyzing microwell 
array cell data in large quantities. Cellpro-
filer provides ‘Grid Analysis’ emulating 
hemocytometer format, but it is limited 
to grid annotation or cell colony intensity 
measurement (14). For ImageJ, the region 
of interest could be defined by using macros 
to segregate individual spots but this may 
not be suitable to process many images in 
high-throughput. Proprietary microarray 
software, such as Quantarray (Packard 
BioChip Technologies, Billerica, MA, 
USA) and Genepix (Molecular Devices, 
Sunnyvale, CA, USA), while allowing user 
to define individual arrays on one image, 
cannot recognize the arrays automatically. 
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Arraycount, an approach to automatically count cells in microwell arrays. 
The procedure consists of fluorescent microscope imaging of cells that are 
seeded in microwells of a microarray system and then analyzing images via 
computer to recognize the array and count cells inside each microwell. To 
start counting, green and red fluorescent images (representing live and dead 
cells, respectively) are extracted from the original image and processed sepa-
rately. A template-matching algorithm is proposed in which pre-defined well 
and cell templates are matched against the red and green images to locate 
microwells and cells. Subsequently, local maxima in the correlation maps are 
determined and local maxima maps are thresholded. At the end, the software 
records the cell counts for each detected microwell on the original image in 
high-throughput. The automated counting was shown to be accurate com-
pared with manual counting, with a difference of ~1–2 cells per microwell: 
based on cell concentration, the absolute difference between manual and au-
tomatic counting measurements was 2.5–13%.
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Moreover, the readout from such microarray 
software is generally limited to fluorescent 
intensity and gives no direct cell counting. 
MetaMorph (Molecular Devices) has a wide 
range of application modules with intuitive 
setting selections for biology analysis. The 
software has an application module for 
Count Nuclei but it does not seem to give 
the number of cells in individual spots in 
a microarray system in a high-throughput 
manner. Cellomics is a complete system for 
high-content screening (HCS) and high-
content analysis (HCA) (Pittsburgh, PA, 
USA). The Thermo Scientific Cellomics is 
a powerful platform including automated 
imaging, image analysis software, and high-
content informatics which is coupled with 
reagents, and laboratory automation. As a 
total platform, it is equipped with hardware 
and software to perform both imaging and 
image analysis. It seems that in order to 
use the software, the user needs the entire 
platform. This software has an application 
named “Spot Detector” to count receptors, 
nuclei, and cells, but it does not appear to 
give the number of cells in each microwell in 
high-throughput. Most systems are focused 
on overall cell or cell colony counting. For 
example, ScanCount and circular Hough 
image transform algorithm (CHiTA) can 
only give the number of cell colonies automat-
ically, but not the individual cell numbers 
in the culture plate (15,16). Although many 
studies of bioimage informatics have been 

done over the past few years, software for cell 
counting in microarray format still remains 
largely underdeveloped (17).

The goal of this study was to develop 
an algorithm (i.e., ArrayCount) to analyze 
cell microarray images by automatically 
detecting a microwell array and then 
counting viable cells in each microwell. To 
do this, we stained the cells with fluorescent 
viability dyes, seeded cells in microwells, 
and then imaged the resulting arrays by 
fluorescence microscopy. The images were 
then loaded into the software for automatic 
cell counting (Figure 1).

Materials and methods
Materials
3-(Trimethoxysilyl)propyl methacrylate 
(TMSPMA), 2-hydroxy-2-methyl propio-
phenone, polyethylene glycol diacrylate 
(PEGDA), were purchased from Sigma-
Aldrich (St. Louis, MO, USA). A live/dead 
staining kit [calcein AM and ethidium 
homodimer 1 (EthD-1)] was purchased 
from Invitrogen (Carlsbad, CA, USA). 
Pluripotent murine embryonic stem (ES) 
cells, R1 strain, were obtained from the 
Mount Sinai Hospital in Toronto, Canada. 
Pre-cleaned microscope glass slides were 
purchased from Fisher Scientific (Waltham, 
MA, USA). Mouse leukemia inhibitory 
factor (LIF), ESGRO was purchased from 
Chemikon Int. Inc., (Eugene, OR, USA). 

All other tissue culture components were 
purchased from Invitrogen. All chemicals 
were used as supplied without further 
purification.

Microwell fabrication
A detailed procedure of a microwell fabri-
cation process has been reported earlier 
(18). In summary, a photolithographic 
approach was used in which a UV-photo-
crosslinkable polyethylene glycol diacrylate 
(PEGDA; MW = 258) solution containing 
0.5% (w/w) of the photoinitiator 2-hydroxy-
2-methyl propiophenone was placed 
on a TMSPMA-treated glass slide. The 
precursor solution was placed between a 
coated glass slide and a piece of cover glass 
with a photomask on top. Microscopy 
coverslips were used as spacers between the 
glass support and the cover glass to define 
the depth of the microwells. The precursor 
solution was then irradiated through a 
bright field photomask with UV light. The 
precursor solution did not undergo radical 
polymerization in the areas shaded by the 
photomask and remained water soluble. 
After curing the polymers, the cover glass 
was carefully removed and the microwells 
were developed by removing the uncross-
linked macromer with deionized water. 
The final microwell arrays contained 
400 and 1089 microwells in 20 × 20 and 
33 × 33 array formats with center-to-center 
spacings of 500 µm and 300 µm, respec-
tively. All microwells were 150 μm deep.

Manual cell counting
Prior to seeding, cells were stained with 
the live/dead stain kit. Live cells were 
stained with calcein AM, a polyanionic 
dye that is well retained in live cells, and 
which produces an intense, uniform green 
fluorescence [exitation/emission (ex/em): 
~495 nm (blue)/~515 nm (green)]. Dead 
cells were stained with EthD-1, which 
enters the damaged cell membranes, 
undergoes a 40-fold enhancement of 
f luorescence upon binding to nucleic 
acids, and produces a bright red fluores-
cence [ex/em: ~495 nm (green)/~635 nm 
(red)]. PEG microwells were visible with 
poor contrast in the red image. The reason 
is because of the adsorption of cationic 
dyes on PEG, which might be because 
of solubilization or entrapment by the 
protruding oxy-ethylene groups on the 
surface (19). Concentrations of 2 μM and 
4 μM were used for the calcein AM and 
EthD-1, respectively. Cells were pelletted 
and suspended in 1 mL staining solution 
for 10 min in an incubator. The cells were 
then re-pelletted and re-suspended in 
media and seeded in the wells as reported 
earlier (18). Six sets of images were taken 

Figure 1. Schematic representation of the imaging and counting processes. The imaging process 
(left) includes imaging the microarray and stitching separate images together to form the whole field 
of the entire microarray. The proposed counting method (right) localizes the microwells in order to 
localize and count cells inside each microwell.
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manually with 2× magnifications for each 
microwell after cell seeding (Eclipse Ti, 
Nikon Instruments, Tokyo, Japan). Each 
image set was composed of a green image 
and a red image which were taken using a 
fluorescent microscope at two wavelengths 
corresponding to the live and dead staining 
dyes, respectively, and were superimposed 
for cell counting. The number of cells were 
counted manually using ImageJ.

Software cell counting
Software cell counting operates by 
automatically locating individual or aggre-
gates of cells as well as the microwells. 
Locating wells and cells is essentially an 
inverse problem, which can be addressed 
as a deconvolution problem. To solve the 
problem, we developed a method to effec-
tively locate wells and detect individual 
cells.

To image a microarray after live/dead 
cell staining, six fluorescent images were 
taken in 3 × 2 mosaic format and stitched 
together. C was defined to be a fluorescent 
image which can be decomposed to red R, 
green G, and blue B images. In our analysis, 
G was used for live cell detection while R 

was used for both dead cell localization 
and well detection (Figure 2).

The proposed method is based on 
matching a user-defined template by sliding 
it over the image pixel by pixel to find the 
objects in the image that are most similar 
to the template [well and cell synthetic 
templates are shown in Figure 2, part (i)]. 
To do this, the color fluorescent image is 
decomposed to red and green images as is 
shown in Figure 2, part (iii). As it can be 
seen, microwells and dead cells were visible 
in red image while live cells emerged in the 
green image. To detect microwells, the 
user-defined well template [Figure 2, part 
(i), left] is matched to the red image [Figure 
2, part (iii), left]. A well correlation map is 
generated by sliding the well template over 
the image pixel by pixel and computing 
the correlation. Localized microwells are 
depicted in Figure 2, part (iv), right.

In the same way, the cell template 
depicted in Figure 2 [part (i), right] was 
matched against the green and red images 
[Figure 2, part (iii)] to detect live and dead 
cells, respectively. After localizing the 
microwells and detecting live and dead 
cells, the number of live and dead cells 

that were encircled in each microwell 
was counted and recorded [Figure 2, 
part (v)].

Cell localization
Cell localization consists of cell template 
generation, template matching, cell 
center localization, and cell counting. As 
depicted in Figure 2, live cell localization, 
dead cell localization, and well detection 
can be processed in parallel. Here we 
propose a general approach whereby a 
user may generate a specific cell template 
based on the data set. Given that G is a 
green image (from 3 × 2 mosaic images) 
defined on a fixed digital grid, D:

{ ( , ) }ijG G i j D= Î ,

[Eq. 1]

and zlc is the set of live cell centers in green 
image consisting of qlc live cell centers:

[ ]{ }1,k
lc lc lcz z k q= Î ,

[Eq. 2]

a disk shape template hc is defined to 
represent a live/dead cell. The cell template 
is then convolved with the green image 
G to generate a correlation map for live 
cells:

lc cH G h= * .

[Eq. 3]

The live cell correlation map obtained 
by applying the cell template to the green 
image is depicted in Figure 3A, part (i). 
The brighter pixels in the correlation map 
show the highly correlated points which 
are more likely to be cell centers. To locate 
the cell centers and remove the unlikely 
ones, we found the local maxima in the 
correlation map:

( ),lc lc lcL l H W= ,

[Eq. 4]

where l is a function to locate the local 
maxima, Llc is located local maxima in 
image G, and Wlc is the window size to be 
locally searched for the local maxima. The 
cell center map as depicted in Figure 3A, 
part (ii) was generated by thresholding the 
local maxima map:

Figure 2. Process flow-diagram of the software. A color fluorescent image is decomposed to red, 
green, and blue images. Then predefined cell and well templates were matched against the green 
and red images to locate cells and wells. Afterward, the local maxima in the correlation maps were 
located and thresholded.
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( ),lc lc lcZ T L τ= ,

[Eq. 5]

where T is a thresholding function to return 
a thresholded set Zlc containing those local 
maxima whose values are greater than the 
threshold value τlc. The threshold value 
τlc was set by minimizing the number of 
misdetections and false alarms.

In the same way that live cells were 
localized, dead cells were localized using 
red image R. The dead cell correlation 
map, which was obtained by applying 
the cell template, is depicted in Figure 
3A, part (iv). The dead cell center map as 
depicted in Figure 3A, part (v) was finally 
generated by thresholding the dead cell 
local maxima map.

Well detection
We took advantage of the fact that the 
edges of PEG microwells are poorly visible 
in the red image to detect and localize 
them. A well template was generated 
using a microwell image, and was matched 
against the R image to detect microwells. 
Given that R is a dead cell image (from 
3 × 2 mosaic images) defined on a fixed 
digital grid D:

( ){ },ijR R i j D= Î ,

[Eq. 6]

we defined zw as the set of well centers in 
image R consisting of qw well centers:

[ ]{ }1,k
w w wz z k q= Î .

[Eq. 7]

One or a few microwells (I n
W) in the 

image were selected by the user to generate 
the well template. Each microwell was 
selected by addressing the top left and the 
bottom right of it. We suggest selecting 
the microwells in an image taken of an 
empty array of microwells; however, 
the well template can be generated by 
selecting microwells in an image taken 
from a cell-seeded array of microwells. 
Although microwell selection to generate 
a new template takes just a few seconds, 
we should point out that the procedure of 
microwell selection/generation was done 
once for the entire data set of 108 images 
(i.e., once a microwell template is generated, 
it can potentially be used for detection of 
microwells with the same shape). The well 
template (hw) is generated by averaging the 
selected microwells:

1

1 N n
w Wn

h I
N =

= å ,

[Eq. 8]

where hw and IWn are the well template and 
the nth selected well, respectively, repre-
sented as two-dimensional matrices. The 

convolution operation can be used for 
template matching where a symmetric 
kernel is used; therefore, for an asymmetric 
kernel, the convolution kernel must be 
flipped and then be convolved with the 
image to generate the correlation map. As 
a symmetric kernel remains unchanged 
by flipping and we want to have a general 
method to be applicable to both symmetric 
and asymmetric kernels, i.e., both 
symmetric and asymmetric microwells, the 
generated well template was flipped (h f

w ) 
and then was convolved with the red image 
R to generate a correlation map:

f
w wH R h= * .

[Eq. 9]

The well correlation map obtained by 
applying the well template is depicted in 
Figure 3B, part (ii). The brighter pixels in 
the correlation map show the highly corre-
lated points which are more likely to be 
the well centers. To locate the well centers 
and remove the unlikely well centers, we 
found the local maxima in the well corre-
lation map

( ),w w wL l H W= ,

[Eq. 10]

where l is a function to locate the local 
maxima, Lw is the located local maxima in 

Figure 3. The overview of the proposed algorithm showing live/dead cell 
detection and counting for each localized microwell. (A) Localizing live and 
dead cells separately in green and red images, respectively. Part (i), live cell 
correlation map; part (ii), localized live-cell centers; part (iii), superimposed 
live-cell centers on the green image converted to an image with gray level 
intensities; part (iv), dead-cell correlation map; part (v), localized live-cell 
centers; and part (vi), superimposed dead-cell centers on the red image 
converted to an image with gray level intensities. (B) Locating microwells by 
applying the developed software. Part (i), original RGB image; part (ii) well 
correlation map; and part (iii), localized wells. (C) Superimposed number of 
cells, which are counted for each well individually.

A

B
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image R, and Ww is the window size to be 
locally searched for the local maxima. The 
well center map was finally generated by 
thresholding the well local maxima map

( ),w w wZ T L τ=

[Eq. 11]

where T is a thresholding function to return 
a thresholded set Zw containing those well 
local maxima whose values are greater 
than the threshold value τw. Localized 
well centers along with the template well 
diameter were used to generate a microwell 
map as depicted in Figure 3B, part (iii). The 
threshold was selected by minimizing the 
number of misdetections and false alarms; 
for a different data set, the user might need 

to set the threshold and visually inspect 
the result (to minimize misdetections 
and false alarms) in order to fine tune the 
threshold.

The live and dead cells encircled in each 
microwell were counted using the coordi-
nates of the microwell center and microwell 
diameter. The red image was used to detect 
both the dead cells and microwells, while 
well boundary responded strongly to the 
cell template and resulted in a significant 
number of false dead cell detections. To 
overcome this problem, we considered a 
slightly smaller diameter with regard to 
the detected well center coordinates to 
encompass and count dead cells. As a 
result, once the well center coordinates 
were detected, the well diameter was used 
to encircle live cells in the green image, 

and a slightly smaller diameter was used 
to encircle dead cells in the red image.

Results
The proposed algorithm was developed in 
Matlab (The MathWorks, Natick, MA, 
USA) and used for microwell cell counting 
in array images. To test the performance, 
the automated cell counting was compared 
with manual cell counting reported previ-
ously (18). In the present version of the 
software, the predefined cell and well 
templates were used as correlation kernels; 
however, in the future work, we plan to 
enable the user to design new templates 
based on the cell type and well shape.

To start software cell counting, a 
fluorescent image is selected and loaded 

Figure 4. Frequency plots of the number of cells per well at 3 seeding concentrations. (A) The number of cells per well in 200-μm microwells. Parts (i)–
(iii), software counting results; parts (iv)–(vi), manual counting results. (B) The number of cells per well in 400-μm microwells. Parts (i)–(iii), software 
counting results; parts (iv)–(vi), manual counting results. Cells per well values were plotted for the recurring counts against the respective cell numbers 
per well. The manual counting results were published previously (18).

A
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into the program. Figure 3B, part (i) shows 
a 3 × 3 microwell array cropped from the 
original fluorescent image. The microwell 
correlation map, along with the live- and 
dead-cell correlation maps, are depicted 
in Figures 3B part (ii), 3A part (i), and 
3A part (iv), respectively. The microwell 
centers were localized by thresholding the 
microwell local maxima map. As shown in 
Figure 3B, part (iii), the diameter of the 
detected microwells was set to be equal to 
that of the microwell template. The located 
live and dead cell centers are depicted in 
Figure 3A part (ii) and part (v), respectively 
while the located cell centers superimposed 
on the original green and red images are 
shown with gray level shadows in Figure 
3A part (iii) and part (vi). Figure 3C shows 
the automated microwell cell counting 
result reported by the software for each 
microwell on the original f luorescent 
image of 11 × 17 microwells, where the 
total number of wells and cells are recorded 
on the bottom left of the image. As it is 
depicted in Figure 3, the microwells are 
precisely detected, both live and dead cells 
inside each microwell are counted, and 
the cell number per well is conveniently 
recorded on top of each microwell. In 
addition, the counts are also recorded by 
the software in a separate Microsoft Excel 
spread sheet for further studies.

To compare the automated counting 
results with the manual ones, all 108 
images similar to the one shown in Figure 
3C, consisting of 22,000 microwells 
and >500,000 cells, were automatically 
counted using the software. As depicted 
in Figure 4, the histograms representing 
manual and software counting are almost 
identical, which shows the two counting 
results are analogous to each other. 
Figure 5 illustrates the average cell counts 
obtained by the two methods. As shown 
in Figure 5A part (i) and 5B part (i), the 
automated counting performs consistently 
and its outcome is similar to that of manual 
counting. Automatic cell counting takes 
<25 s in average to process an image with 
1200 × 1600 resolution containing 250 
microwells (with diameter of 200 microns) 
on a typical 1.6 GHz processor. The process 
time consists of the time fractions spent on 
well detection, live- and dead-cell detec-
tions, cell counting, and result reporting. 
The process is much faster than manual 
counting, can be applied in batch mode and 
overnight, and  its precision is consistent 
over time (in contrast with the manual 
counting in which the counting precision 
might be decreased over time).

The mean cell counts in 200-µm wells 
were 5, 10, and 15 [Figure 5A, part (i)] 
while the absolute counting differences 

were 0.5, 1, and 2—equal to 10%, 10%, and 
13.3%, respectively [Figure 5A, part (ii)]. 
The mean cell counts in 400-µm wells were 
15, 30, and 60 [Figure 5B, part (i)], while 
the absolute counting differences between 
the manual and automated counting were 
0.5, 1, and 2—equal to 3.33%, 3.33%, and 
3.33%, respectively [Figure 5B, part (ii)].

Overall, the counting difference between 
the two methods ranged 0.5–2 cells/well. 
The proposed method performed robustly; 
however, as a typical pattern recognition 
problem, there were some misdetections 
in the counting results. To compare the 
counting methods, two differences were 
defined. The original difference was the 
average cell difference per well, which was 
obtained by summing up the automatic-
manual counting differences for all wells 
and dividing the sum by the number of 
wells. In contrast, the absolute difference 
was computed by summing up the absolute 
automatic-manual counting differences 
for all wells and dividing the sum by the 
number of wells (Figure 5). Two possible 
sources for cell counting differences are 
as follows. First, manual cell counting 
results—though considered accurate—are 
subjective, may vary from person to person, 
and are prone to error. Therefore, we used 
the term ‘cell counting difference,’ (i.e., 
the difference between the two methods), 
in place of ‘cell counting error.’ Second, 
the red image was used for both dead-cell 
counting and well detection by applying 
cell and well templates, respectively. Since 
well boundary responds strongly to the cell 
template and causes a  significant number 
of false detections, a slightly smaller well 
diameter has been used, which does omit 
dead cells that are located close or attached 
to the well boundary.

It can be seen in Figure 4 that the cell 
counting difference is higher (10–13.3%) 
for 200-µm wells with 0.5–2 million 
cells/mL concentrations where the 
average number of seeded cells per well 
is low (5–15). In such cases, the effect of 
missing dead cells (considering smaller well 
diameter to encircle and count dead cells 
as it was mentioned earlier) in comparison 
with the average number of seeded cells 
was significant. Increasing the well 
diameter and cell concentration increases 
the precision of automatic cell counting 
(3.33%); the influence of missing dead cells 
in comparison with the average number of 
seeded cells was insignificant.

Moreover, we compared the proposed 
Arraycount method with ImageJ. We wrote 
a plug-in for ImageJ using the ImageJ macro 
language. The macro can be installed in 
and used with ImageJ (version 1.41o). The 
major difference between Arraycount and 

Figure 5. Software and manual counting comparisons for the number of cells per well. (A) 200-μm 
diameter microwells. (B) 400-μm diameter microwells. The cell number per well counts from soft-
ware and manual counting methods are shown in panel A, part (i) and panel B, part (i), at 3 initial 
seeding concentrations. The differences of the counting are shown in panel A, part (ii) and panel B, 
part (ii), respectively, where the averages were calculated either by subtracting manual counts from 
software counts (original), or by subtracting manual counts from software counts and taking the 
average of their absolute values (absolute).

A

B
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the ImageJ macro is that the ImageJ macro 
allows for semi-automatic cell counting, 
but it is not capable of automatic well 
detection. Using the ImageJ plug-in, the 
user must provide prior information such 
as the number of microwells in a matrix 
format (i.e., the number of rows and the 
number of columns). Moreover, the user 
must provide the coordinates of three 
microwells including the top left, the top 
right, and the bottom left by drawing them. 
In this way, ImageJ plugin merely calculates 
the well coordinates based on information 
that is introduced by the user. In contrast, 
Arraycount is based on pattern recog-
nition and image processing techniques 
for automatic detection of microwells, and 
does not need input information such as 
the number of microwells and their coordi-
nates. Arraycount can also be used in batch 
mode (by writing a simple MatLab script), 
which allows continuous cell counting in 
many images, without user interference. 
Contrastly, in ImageJ, the user has to do 
the counting image by image. Overall, 
the ImageJ plug-in is adequate for small 
numbers of array images, while Arraycount 
is useful for large amounts of data in high-
throughput screening.

Discussion
This study establishes an approach for 
automatic cell counting in microarray 
format. The proposed method can be used 
to automatically recognize the location of 
each microwell on the microarray and then 
give the cell counts for each microwell in 
a timely fashion. It takes <0.1 s to detect 
a well and count its seeded cells. The 
proposed method, in its current stage, is 
capable of localizing the specific microwell 
shape and cell type that have been used in 
our experiments; however, with reasonable 
efforts it can be adapted to count other cell 
types seeded in microwells with arbitrary 
shapes. In our experiments, the cells were 
fluorescent and the images were taken 
immediately after cell seeding, so the 
shape of the cells were shown to be round 
and uniform across the microwells; thus, 
it should be stressed that the proposed 
algorithm is efficient and accurate for 
counting cells where such conditions 
(roundness, uniformity) are maintained. 
It can potentially be used for stem cell 
research, but it has not been tested for 
counting cells in stem cell aggregates. In 
the experiments that involve cell aggre-
gates, in conditions where neighboring 
cells significantly overlap with each other, 
or in conditions where cell morphology 
may change, the cell counting is prone to 
error and it may not be desirable to use this 
method.

In the proposed algorithm, we assumed 
that cells are f luorescent, so in situa-
tions where the user needs to distinguish 
features across cells such as antibody-
stained microwells, it is not desirable to 
use the same fluorescence range; otherwise 
the results will be prone to error. Also, in 
cases where the red stain spills outside of 
the microwells, the well detection would 
not be accurate due to the occlusion of well 
boundaries with the red stain in the red 
image.

Moreover, we assume uniform spatial 
illumination during imaging, which 
sometimes may not be maintained. In 
such cases for precise cell counting and 
well detection, background estimation/
subtraction must be applied in advance. 
Our future work focuses on employing 
the machine learning techniques to select 
or generate the appropriate cell and well 
templates using a template library.
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